2M/PHY-150 (Th) Syllabus-2023

2025

(May-June)

FYUP: 2nd Semester Examination

PHYSICS

(Major)

(Electricity and Magnetism, Optics and Electronics)

(PHY-150)

(Theory)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any eight questions

1. State and prove Gauss's law in electrostatics. Apply this law to calculate the field due to a uniformly charged non-conducting sphere at a distance r from the centre of sphere where (i) r > R and (ii) r < R, where R is the radius of the sphere. Also draw a graph showing the variation of electric field intensity with distance r.

D25/1243

(Turn Over)

Use Biot-Savart law to calculate the

5

1+4=5

(Continued)

2

		magnetic men	-
	(b)	current of 1 A. Calculate the magnetic field at a distance of 10 cm from the	2
3.	(a)	State Faraday's laws of electromagnetic induction. Express the law in its integral and differential forms. 1+3=4	1
	(b)	Write down the four Maxwell's equations in vacuum as well as in a dielectric medium.	3
4.	(a)	What is the effect of introducing a dielectric slab in a parallel-plate capacitor? Derive the expression for capacitance of a parallel-plate capacitor with a dielectric slab of thickness t placed between the plates of separation d and $t < d$. $1+2=3$	3
	(b)	Derive impedance of an electrical circuit. Calculate the impedance of a series <i>L-C-R</i> circuit when an alternative voltage $v = V_0 e^{j\omega t}$ is applied across the combination.	1
5.	(a)		•

refraction at a plane boundary.

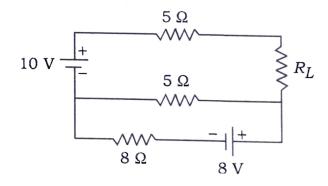
(b) Define cardinal points of an optical

Find the focal length of a combination of two thin lenses of focal lengths f_1 and f_2 separated by a distance d . Also discuss the positions of the cardinal points for this lens
system. 3+4=7

- 7. Explain the terms 'translation matrix', 'refraction matrix' and 'system matrix' of an optical system for paraxial rays. Obtain the fundamental translation and refraction matrices of such a system.

 1+1+1+2+2=7
- (a) Convert (21·9)₁₀ into binary number. 2
 (b) Perform the following arithmetic operations where the binary numbers are in 2's complement representation: 2×2=4
 - (i) 00011010 + 11101100
 - (ii) 00110000 00010111
 - (c) Find the decimal equivalent of the negative number 11010001 given in 2's complement representation.
- 9. (a) Draw the circuit diagram of an OR gate using resistor and diodes. Explain its operation. 2+2=4
 - (b) Show how NAND gate can be used to find OR and NOR gates. $1\frac{1}{2}+1\frac{1}{2}=3$
- 10. (a) State and explain De Morgan's theorem. 2
 - (b) Reduce the expression $\overline{A}B + \overline{A} + \overline{AB}$ using Boolean algebraic theorem.

D25/1243


(Turn Over)

system.

(c) Show that

$$ABC + B\overline{C}D + \overline{A}BC = BC + BD$$
 2

- **11.** (a) Discuss the use of p-n junction diodes in a full-wave rectifier.
 - (b) Discuss the origin of different current components in a transistor. Why is the base region of BJT made thin? 4+1=5
- 12. (a) Show that $\beta = \frac{\alpha}{1-\alpha}$ for a transistor, where the symbols have their usual meanings.
 - (b) Find the current in the load resistance $R_L = 10 \Omega$ in the following circuit: 3

(c) A transistor with $\dot{\alpha} = 0.49$ is used in CE mode. If the emitter current is 2 mA, find the collector current.

2